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Abstract. In this paper, we introduce a conceptually simple network
for generating discriminative tissue-level segmentation masks for the pur-
pose of breast cancer diagnosis. Our method efficiently segments different
types of tissues in breast biopsy images while simultaneously predicting a
discriminative map for identifying important areas in an image. Our net-
work, Y-Net, extends and generalizes U-Net by adding a parallel branch
for discriminative map generation and by supporting convolutional block
modularity, which allows the user to adjust network efficiency without
altering the network topology. Y-Net delivers state-of-the-art segmen-
tation accuracy while learning 6.6× fewer parameters than its closest
competitors. The addition of descriptive power from Y-Net’s discrim-
inative segmentation masks improve diagnostic classification accuracy
by 7% over state-of-the-art methods for diagnostic classification. Source
code is available at: https://sacmehta.github.io/YNet.

1 Introduction

Annually, millions of women depend on pathologists’ interpretive accuracy to
determine whether their breast biopsies are benign or malignant [4]. Diagnostic
errors are alarmingly frequent, lead to incorrect treatment recommendations,
and can cause significant patient harm [2]. Pathology as a field has been slow to
move into the digital age, but in April 2017, the FDA authorized the marketing
of the Philips IntelliSite Pathology Solution (PIPS), the first whole slide imaging
system for interpreting digital surgical pathology slides on the basis of biopsy
tissue samples, thus changing the landscape4.

Convolutional neural networks (CNNs) produce state-of-the-art results in
natural [12,6] and biomedical classification and segmentation [8,11] tasks. Train-
ing CNNs directly on whole slide images (WSIs) is difficult due to their massive
size. Sliding-window-based approaches for classifying [8,5] and segmenting [11,10]

4 https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm552742.
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medical images have shown promising results. Segmentation and classification
are usually separate steps in automated diagnosis systems.

Segmentation-based methods consider tissue structure, such as size and dis-
tribution, to help inform class boundary decisions. However, these segmentation
methods suffer from two major drawbacks. First, labeled data is scarce because
the labeling of biopsy images is time-consuming and must be done by domain
experts. Second, segmentation-based approaches are not able to weigh the im-
portance of different tissue types. The latter limitation is particularly concerning
in biopsy images, because not every tissue type in biopsy images is relevant for
cancer detection. On the other hand, though classification-based methods fail
to provide structure- and tissue-level information, they can identify regions of
interest inside the images that should be used for further analysis.

In this paper, we combine the two different methods, segmentation and clas-
sification, and introduce a new network called Y-Net that simultaneously gen-
erates a tissue-level segmentation mask and a discriminative (or saliency) map.
Y-Net generalizes the U-Net network [11], a well-known segmentation network
for biomedical images. Y-net includes a plug-and-play functionality that enables
the use of different types of convolutional blocks without changing the network
topology, allowing users to more easily explore the space of networks and choose
more efficient networks. For example, Y-Net delivers the same segmentation
performance as that of [10] while learning 6.6× fewer parameters. Furthermore,
the discriminative tissue-level segmentation masks produced using Y-Net pro-
vide powerful features for diagnosis. Our results suggest that Y-Net is 7% more
accurate than state-of-the-art segmentation and saliency-based methods [10,5].

Statement of problem: The problem we wish to solve is the simultaneous
segmentation and diagnosis of whole slide breast cancer biopsy images. For this
task, we used the breast biopsy dataset in [2,10] that consists of 240 whole slide
breast biopsy images with heamatoxylin and eosin (H&E) staining. A total of
87 pathologists diagnosed a randomly assigned subset of 60 slides into four diag-
nostic categories (benign, atypia, ductal carcinoma in situ, and invasive cancer),
producing an average of 22 diagnostic labels per case. Then, each slide was care-
fully interpreted by a panel of three expert pathologists to assign a consensus
diagnosis for each slide that we take to be the gold standard ground truth. Fur-
thermore, the pathologists have marked 428 regions of interest (ROIs) on these
slides that helped with diagnosis and a subset of 58 of these ROIs have been
hand segmented by a pathology fellow into eight different tissue classifications:
background, benign epithelium, malignant epithelium, normal stroma, desmo-

Fig. 1: This figure shows (at left) the breast biopsy ROI with H&E staining broken into
multiple instances with one instance enlarged to show more detail. On the right are
the pixel-wise tissue-level labelings of the ROI and the instance.
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plastic stroma, secretion, blood, and necrosis. The average size of these ROIs is
10, 000× 12, 000. We use these 428 ROIs for our data set.

In this work, we break each ROI into a set (or bag) of equal size patches
that we will call instances, as shown in Figure 1. Each ROI X has a known
groundtruth diagnostic label Z. There are no separate diagnostic labels for the
instances; they all have the same groundtruth label Z, but some of them con-
tribute to the diagnosis of Z and others do not. Our system, therefore, will learn
the discriminativeness of each instance during its analysis. Furthermore, each
pixel of each of these instances has a known tissue classification into one of the
eight categories; tissue classification must be learned from the groundtruth ROIs.
Using the groundtruth diagnostic labels Z of the ROIs and the groundtruth tis-
sue labels Y from the 58 labeled ROIs, our goal is to build a classification system
that can input a ROI, perform simultaneous segmentation and classification, and
output a diagnosis. Our system, once trained, can be easily applied to WSIs.
Related work: Biomedical images are difficult to classify and segment, because
their anatomical structures vary in shape and size. CNNs, by virtue of their repre-
sentational power and capacity for capturing structural information, have made
such classification and segmentation tasks possible [11,8]. The segmentation-
based method in [10] and saliency map-based method in [5] are most similar to
our work. Mehta et al. [10] developed a CNN-based method for segmenting breast
biopsy images that produces a tissue-level segmentation mask for each WSI. The
histogram features they extracted from the segmentation masks were used for
diagnostic classification. Geçer [5] proposed a saliency-based method for diag-
nosing cancer in breast biopsy images that identified relevant regions in breast
biopsy WSIs to be used for diagnostic classification. Our main contribution in
this paper is a method for joint learning of both segmentation and classification.
Our experiments show that joint learning improves diagnostic accuracy.

2 A System for Joint Segmentation and Classification

Our system (Figure 2) is given an ROI from a breast biopsy WSI and breaks
it into instances that are fed into Y-Net. Y-Net produces two different outputs:
an instance-level segmentation mask and an instance-level probability map. The
instance-level segmentation masks have, for each instance, the predicted labels
of the eight different tissue types. These are combined to produce a segmentation
mask for the whole ROI. The instance-level probability map contains (for every
pixel) the maximum value of the probability of that instance being in one of

Fig. 2: Overview of our method for detecting breast cancer.
.
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the four diagnostic categories. This map is thresholded to binary and combined
with the segmentation mask to produce the discriminative segmentation mask.
A multi-layer perceptron then uses the frequency and co-occurrence features
extracted from the final mask to predict the cancer diagnosis.

2.1 Y-Net Architecture

Y-Net is conceptually simple and generalizes U-Net [11] to joint segmentation
and classification tasks. U-Net outputs a single segmentation mask. Y-Net adds
a second branch that outputs the classification label. The classification output
is distinct from the segmentation output and requires feature extraction at low
spatial resolutions. We first briefly review the U-Net architecture and then in-
troduce the key elements in the Y-Net architecture.
U-Net: U-Net is composed of two networks: (1) encoding network and (2) de-
coding network. The encoding network can be viewed as a stack of encoding and
down-sampling blocks. The encoding blocks learn input representations; down-
sampling helps the network learn scale invariance. Spatial information is lost in
both convolutional and down-sampling operations. The decoder can be viewed
as a stack of up-sampling and decoding blocks. The up-sampling blocks help
in inverting the loss of spatial resolution, while the decoding blocks help the
network to compensate for the loss of spatial information in the encoder. U-Net
introduces skip-connections between the encoder and the decoder, which enables
the encoder and the decoder to share information.
Y-Net: Y-Net (Figure 3a) adopts a two-stage procedure. The first stage outputs
the instance-level segmentation mask, as U-Net does, while the second stage adds
a parallel branch that outputs the instance-level classification label. In spirit, our
approach follows Mask-RCNN [7] which jointly learns the segmentation and clas-
sification of natural images. Unlike Mask-RCNN, Y-Net is fully convolutional;
that is, Y-Net does not have any region proposal network. Furthermore, training
Y-Net is different from training Mask-RCNN, because Mask-RCNN is trained
with object-level segmentations and classification labels. Our system has diag-
nostic labels for entire ROIs, but not for the instance-level.

Y-Net differs from the U-Net in the following aspects:
Abstract representation of encoding and decoding blocks: At each spatial
level, U-Net uses the same convolutional block (a stack of convolutional layers) in

X YU-Net

Conv → BN → ReLU Encoding block (EB) Decoding block (DB)

Concatenation Avg. pooling Fully connected (FC) layers

↑ Bilinear up-sampling

X YY-Net

Z

(a) U-Net vs. Y-Net

Spatial Block # Blocks # Channels
Level Name (depth) (width)

1 Conv 1 16

2
Conv 1 w
EB 2 2w

3
Conv 1 2w
EB d 4w

4
Conv 1 w
EB 2 2w

5
Conv 1 w/2
EB 2 w

6
Avg. Pool 1 w

FC 1 64
FC 1 Classes

(b) Encoding Network
Fig. 3: (a) Comparison between U-Net and Y-Net architectures. (b) The encoding net-
work architecture used in (a). U-Net in (a) is a generalized version of U-Net [11].
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both the encoder and the decoder. Instead, Y-Net abstracts this representation
and represents convolutional blocks as general encoding and decoding blocks that
can be used anywhere, and are thus not forced to be the same at each spatial
level. Representing Y-Net in such a modular form provides it a plug-and-play
functionality and therefore enables the user to try different convolutional block
designs without changing the network topology.
Width and depth multipliers: Larger CNN architectures tend to perform
better than smaller architectures. We introduce two hyper-parameters, a width
multiplier w and a depth-multiplier d, that allow us to vary the size of the
network. These parameters allow Y-Net to span the network space from smaller
to larger networks, allowing identification of better network structures.
Sharing features: While U-Net has skip-connections between the encoding
and decoding stages, Y-net adds a skip-connection between the first and last
encoding block at the same spatial resolution in the encoder, as shown in Figure
3 with a dashed arrow, to help improve segmentation.
Implementation details: The encoding network in Y-Net (Figure 3a) consists
of the repeated application of the encoding blocks and 3×3 convolutional layers
with a stride of 2 for down-sampling operations, except for the first layer which
is a 7× 7 standard convolution layer with a stride of 2. Similarly, the decoding
network in Y-Net consists of the repeated application of the decoding blocks
and bilinear up-sampling for up-sampling operations. We first train Y-Net for
segmentation and then attach the remaining encoding network (spatial levels 4,
5 and 6 in Figure 3b) to jointly train for segmentation and classification. We
define a multi-task loss on each instance as L = Lseg + Lcls, where Lseg and
Lcls are the multi-nominal cross-entropy loss functions for the segmentation and
classification tasks, respectively. All layers and blocks, except the classification
and fully connected (FC) layers, are followed by a batch normalization and ReLU
non-linearity. An average pooling layer with adaptive kernel size enables Y-Net
to deal with arbitrary image sizes.

2.2 Discriminative Instance Selection

The encoding network in Y-Net generates a C-dimensional output vector z of
real values; C represents the number of diagnostic classes. The real-values in z
are normalized using a softmax function σ to generate another C-dimensional
vector z̄ = σ(z). It is reasonable to assume that instances with low probability
will have low discriminativeness. If max(z̄) > τ , then the instance is considered
discriminative, where τ is the threshold selected using the method in [8].

2.3 Diagnostic Classification

Segmentation masks provide tissue-level information. Since training data with
tissue-level information is limited and not all tissue types contribute equally
to diagnostic decisions, our system combines the segmentation mask with the
discriminative map to obtain a tissue-level discriminative segmentation mask.
Frequency and co-occurrence histograms are extracted from the discriminative
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segmentation mask and used to train a multi-layer perceptron (MLP) with 256,
128, 64, and 32 hidden nodes to predict the diagnostic class.

3 Experiments

In this section, we first study the effect of the modular design in Y-Net. We then
compare the performance of Y-Net with state-of-the-art methods on tissue-level
segmentation as well as on diagnostic classification tasks. For evaluation, we
used the breast biopsy dataset [2,10] that consists of 428 ROIs with classification
labels and 58 ROIs with tissue-level labels.

3.1 Segmentation Results

We used residual convolutional blocks (RCB) [6] and efficient spatial pyramid
blocks (ESP) [9] for encoding and decoding. Based on the success of PSPNet for
segmentation [12], we added pyramid spatial pooling (PSP) blocks for decoding.
Training details: We split the 58 ROIs into nearly equal training (# 30) and
test (# 28) sets. For training, we extracted 384 × 384 instances with an over-
lap of 56 pixels at different image resolutions. We used standard augmentation
strategies, such as random flipping, cropping, and resizing, during training. We
used a 90:10 ratio for splitting training data into training and validation sets.
We trained the network for 100 epochs using SGD with an initial learning rate
of 0.0001, decaying the rate by a factor of 2 after 30 epochs. We measured the
accuracy of each model using mean Region Intersection over Union (mIOU).
Segmentation studies: Segmentation results are given in Table 1 and Table
2a. We make the following observations:
Feature sharing: (Table 1a) When features were shared between the encoding
blocks at the same spatial level, the accuracy of the network improved by about
2% (R2 and R5) with element-wise addition operations and about 4% (R3 and
R6) with concatenation operations for both ESP and RCB blocks. The increase
in number of parameters due to concatenation operations was not significant.
Network depth : (Table 1b) The value of d was varied from 2 to 5 in Y-Net for
both ESP and RCB types of convolutional blocks. The accuracy of the network
increased with the depth of the network. When we increased d from 2 to 5, the

Row
Encoding Decoding Feature # Params mIOU # Params mIOU

Block Block Sharing (in million) (in million)
# ESP RCB ESP RCB PSP Add Concat w = 64 w = 128

R1 X X 0.49 30.39 1.95 35.23
R2 X X X 0.49 32.12 1.95 36.19
R3 X X X 0.57 34.58 2.25 38.03

R4 X X 1.72 33.05 6.84 37.93
R5 X X X 1.72 36.34 6.84 39.21
R6 X X X 1.81 38.75 7.16 40.23

R7 X X X 0.69 37.12 2.75 44.03
R8 X X X 1.91 41.96 7.62 44.19

(a) Network width vs. accuracy (b) Network depth vs. accuracy
Table 1: Ablation studies on Y-Net. In (a), we used d = 5. In (b), we used w = 64.
The experimental settings in (b) were the same as for R3 and R6 in (a).
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Network mIOU # Params (in million)

Superpixel + SVM [10] 25.8 NA

Badrinarayanan et al. [1] 37.6 12.8
Fakhry et al. [3] 38.1 12.8
Mehta et al. [10] 44.20 26.03

YNet (ESP-PSP) - seg 44.03 2.75
YNet (RCB-PSP) - seg 44.19 7.62

YNet (ESP-PSP) - joint 43.24 3.91
YNet (RCB-PSP) - joint 43.11 9.11

(a) Segmentation results

Feature Type Accuracy (in %)

Pathologists (# 44) 70.0

LAB + LBP features [5] 45.0
Segmentation mask [10] 54.5
Saliency map [5] 55.0

Y-Net with different choices
Segmentation mask 53.25

-background 52.22
-stroma 48.06

Discriminative mask 62.50

(b) Diagnostic classification results
Table 2: Comparison with state-of-the-art methods. seg: training Y-Net only for the
segmentation task; joint: joint learning for segmentation and classification tasks.

accuracy improved by about 4% while the network parameters were increased by
about 1.6× and 1.9× for Y-Net with ESP and RCB respectively. In the following
experiments, we used d = 5.

Network width : (Table 1a) When the value of w changed from 64 to 128, the
accuracy of Y-Net with ESP (R1-R3) and RCB (R4-R6) increased by about 4%.
However, the number of network parameters increased drastically.

PSP as decoding block : (Table 1a) Changing the decoding block from ESP
and RCB to PSP helped improve the accuracy by about 3%. This is because
the pooling operations in PSP modules helped the network learn better global
contextual information. Surprisingly, when the value of w increased from 64 to
128, Y-Net with ESP and PSP delivered accuracies similar to PCB and PSP. This
is likely due to the increased number of kernels per branch in the ESP blocks,
which helps to learn better representations. Y-Net with ESP blocks learns about
3× fewer parameters and is therefore more efficient.

Joint Training : (Table 2a) Training Y-Net jointly for both classification and
segmentation tasks dropped the segmentation accuracy by about 1%. This is
likely because we trained the network using an instance-based approach and we
did not have classification labels at instance-level.

Comparison with state-of-the-art : (Table 2a) Y-Net outperformed the plain
[1] and residual [3] encoder-decoder networks by 7% and 6% respectively. With
the same encoding block (RCB) as in [10], Y-Net delivered a similar accuracy
while learning 2.85× fewer parameters. We note that Y-Net with ESP and PSP
blocks also delivered a similar performance while learning 6.6× fewer parameters
than [10] and 2.77× fewer parameters than Y-Net with RCB and PSP blocks.
Therefore, the modular architecture of Y-Net allowed us to explore different
convolutional blocks with a minimal change in the network topology to find a
preferred network design.

3.2 Diagnostic Classification Results

For classification experiments, we split the 428 ROIs in the dataset into almost
equal training (# 209) and test (# 219) sets while maintaining the same class
distribution across both the sets. We note that the 30 ROIs used for training
the segmentation part were part of the training subset during the classification
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task. The tissue-level segmentation mask and discriminative map were first gen-
erated using Y-Net with ESP as encoding blocks and PSP as decoding blocks,
which were then used to generate the discriminative segmentation mask. A 44-
dimensional feature vector (frequency and co-occurrence histogram) was then
extracted from the discriminative mask. These features were used to train a
MLP that classifies the ROI into four diagnoses (benign, atypia, DCIS, and
invasive cancer).

A summary of results is given in Table 2b. The classification accuracy im-
proved by about 9% when we used discriminative masks instead of segmenta-
tion masks. Our method outperformed state-of-the-art methods that use either
the segmentation features [10] or the saliency map [5] by a large margin. Our
method’s 62.5% accuracy is getting closer to the 70% accuracy of trained pathol-
ogists in a study [2]. This suggests that the discriminative segmentation masks
generated using Y-Net are powerful.

4 Conclusion

The Y-Net architecture achieved good segmentation and diagnostic classification
accuracy on a breast biopsy dataset. Y-Net was able to achieve the same seg-
mentation accuracy as state-of-the-art methods while learning fewer parameters.
The features generated using discriminative segmentation masks were shown to
be powerful and our method was able to attain higher accuracy than state-of-the-
art methods. Though we studied breast biopsy images in this paper, we believe
that Y-Net can be extended to other medical imaging tasks.
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